

Corporate Office: 44-A/1, Kalu Sarai, New Delhi 110016 | Web: www.meniit.com

JEE MAINS-2017

(IMPORTANT INSTRUCTIONS)

- 1. Immediately fill in the particulars on this page of the Test Booklet with **only Black Ball Point Pen** provided in the examination hall.
- 2. The Answer Sheet is kept inside this Test Booklet. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the particulars carefully.
- 3. The test is of **3 hours** duration.
- 4. The Test Booklet consists of **90** questions. The maximum marks are **360**.
- 5. There are **three** parts in the question paper A, B, C consisting of **Mathematics**, **Physics** and **Chemistry** having 30 questions in each part of equal weightage. Each question is allotted **4 (four)** marks for each correct response.
- 6. Candidates will be awarded marks as started above in instruction No. 5 for correct response of each question. ¼ (one fourth) marks of the total marks allotted to the question (i.e. 1 mark) will be deducted for indicating incorrect response of each question. No deduction from that total score will be made if no response is indicated for an item in the answer sheet.
- 7. There is only one correct response for each question. Filling up more than one response in any question will be treated as wrong response and marks for wrong response will be deducted accordingly as per instruction 6 above.
- 8. For writing particulars / marking responses on **Side–1** and **Side–2** of the Answer Sheet use **only Black Ball Point Pen** provided in the examination hall.
- 9. No candidate is allowed to carry any textual material, printed or written, bits of papers, pager, mobile phone, any electronic device, etc. except the Admit Card inside the examination room/hall.
- 10. Rough work is to be done on the space provided for this purpose in the Test Booklet only. This space is given at the bottom of each page and in **four** pages (Page **20-30**) at the end of the booklet.
- 11. On completion of the test, the candidate must hand over the Answer Sheet to the Invigilator on duty in the Room / Hall. **However, the candidates are allowed to take away this Test Booklet with them**.
- 12. The CODE for this Booklet is **D**. Make sure that the CODE printed on **Side-2** of the Answer Sheet and also tally the serial number of the Test Booklet and Answer Sheet are the same as that on this booklet. In case of discrepancy, the candidate should immediately report the matter to the Invigilator for replacement of both the Test Booklet and the Answer Sheet.
- 13. Do not fold or make any stray mark on the Answer Sheet.

PART-A-MATHEMATICS

1. If S is the set of distinct values of 'b' for which the following system of linear equations

x + y + z = 1

x + ay + z = 1

ax + by + z = 0

has no solution, then S is

(A) an empty set (B) an infinite set

(C) a finite set containing two or more elements (D) a singleton

Ans. [D]

Sol. : Equations has no solutions D = 0 and at least one of D_x , D_y , $D_z \neq 0$

 \Rightarrow 1 (a – b) – 1 (1 – a) + 1 (b – a²) = 0

$$\Rightarrow 2a - b - 1 + b - a^2 = 0 \Rightarrow a^2 - 2a + 1 = 0 \Rightarrow a = 1$$

: Two planes coincide for no solution third plane should be parallel to first two plane

$$\therefore \frac{1}{a} = \frac{1}{b} = \frac{1}{1} \Longrightarrow b = 1$$

: A singleton set.

2. The following statement $(p \rightarrow q) \rightarrow [(\sim p \rightarrow q) \rightarrow q]$ is

≻q]

(A) a tautology

(B) equivalent to $\sim p \rightarrow q$

(C) equivalent to $p \rightarrow \sim q$

(D) a fallacy

Ans. [A]

Sol.
$$(p \rightarrow q) \rightarrow [(\sim p \rightarrow q) -$$

р	q	~ p	$\sim p \rightarrow q$	$(\sim p \rightarrow q) \rightarrow q$	$p \rightarrow q$	$(p \rightarrow q)[\sim p \rightarrow q) \rightarrow q$
Т	Т	F	Т	Т	Т	Т
Т	F	F	Т	F	F	Т
F	Т	Т	Т	Т	Т	Т
F	F	Т	F	Т	Т	Т

... Given statement is a tautology.

3. If $5(\tan^2 x - \cos^2 x) = 2\cos 2x + 9$, then the value of $\cos 4x$ is

(A)
$$\frac{-3}{5}$$
 (B) $\frac{1}{3}$ (C) $\frac{2}{9}$ (D) $\frac{-7}{9}$

Ans. [D]

Sol. $5 (\tan^2 x - \cos^2 x) = 2\cos 2x + 9$

$$\Rightarrow 5\left(\frac{1-\cos 2x}{1+\cos 2x} - \frac{1+\cos 2x}{2}\right) = 2\cos 2x + 9$$

$$\Rightarrow 5\left(\frac{2-2\cos 2x - (1+2\cos 2x + \cos^2 2x)}{2(1+\cos 2x)}\right) = 2\cos 2x + 9$$

$$\Rightarrow 5(1-4\cos 2x - \cos^2 2x) = 2(2\cos^2 2x + 11\cos 2x + 9)$$

$$\Rightarrow 9\cos^2 2x + 42\cos 2x + 13 = 0$$

$$\Rightarrow 9\cos^2 2x + 42\cos 2x + 13 = 0$$

$$\Rightarrow 9\cos^2 2x + 3\cos 2x + 39\cos 2x + 13 = 0$$

$$\Rightarrow \cos 2x = \frac{-1}{3} \qquad (\because -1 \le \cos 2x \le 1)$$

$$\therefore \cos 4x = 2\cos^2 2x - 1 - \frac{2}{9} - 1 = -\frac{7}{9}.$$
4. For three events A, B and C, P (Exactly one of A or B occurs) = P (Exactly one of B or C occurs)
$$= P(Exactly one of C or A occurs) = \frac{1}{4} \text{ and P (All the three events occur simultaneously)} = \frac{1}{16}.$$
Then the probability that at least one of the events occurs, is
$$(A) \frac{7}{32} \qquad (B) \frac{7}{16} \qquad (C) \frac{7}{64} \qquad (D) \frac{3}{16}$$
Ans. [B]
Sol. P (exactly one of A & B occur) = P(A) + P(B) - 2P(A \cap B) = \frac{1}{4} \qquad \dots \dots (1)
P (exactly one of B & C occur) = P(B) + P(C) - 2P(B \cap C) = \frac{1}{4} \qquad \dots \dots (2)
P (exactly one of C & A occur) = P(C) + P(A) - 2P(C \cap A) = \frac{1}{4} \qquad \dots \dots (3)
Adding (1), (2) & (3)
$$2(P(A) + P(B) + P(C) - P(A \cap B) - P(B \cap C) - P(C \cap A)) = \frac{3}{8}$$
P(All three occurs simultaneously) = P(A \cap B \cap C) = \frac{1}{16}
$$\therefore P (atleast one of events occur) = P(A \cup B \cup C) = \frac{3}{8} + \frac{1}{16} - \frac{7}{16} \cdot \text{Ans.}$$

3

5.

Let ω be a complex number such that $2\omega + 1 = z$ where $z = \sqrt{-3}$. If $\begin{vmatrix} 1 & 1 & 1 \\ 1 & -\omega^2 - 1 & \omega^2 \\ 1 & \omega^2 & \omega^7 \end{vmatrix} = 3k$, then k is

equal to

(A)
$$-z$$
 (B) z (C) -1 (D) 1

Ans. [A]

Sol. \therefore 2 ω + 1 = $\sqrt{3}$ i $\Rightarrow \omega = \frac{-1 + \sqrt{3}i}{2}$ = imaginary cube root of unity

 $\therefore \begin{vmatrix} 1 & 1 & 1 \\ 1 & -(1+\omega)^2 & \omega^2 \\ 1 & \omega^2 & \omega^7 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{vmatrix} = 3k$

applying $R_1 \rightarrow R_1 + R_2 + R_3$

:
$$k = \omega^2 - \omega = \frac{-1 - \sqrt{3}i}{2} - \left(\frac{-1 + \sqrt{3}i}{2}\right) = -\sqrt{3}i = -z$$
. Ans.

6. Let k be an integer such that triangle with vertices (k, – 3k), (5, k) and (– k, 2) has area 28 sq. units. Then the orthocentre of this triangle is at the point

$$(A)\left(2,\frac{-1}{2}\right) \qquad (B)\left(1,\frac{3}{4}\right) \qquad (C)\left(1,\frac{-3}{4}\right) \qquad (D)\left(2,\frac{1}{2}\right)$$

Ans. [D]

Sol. Area =
$$\frac{1}{2} \begin{vmatrix} k & -3k & 1 \\ 5 & k & 1 \\ -k & 2 & 1 \end{vmatrix}$$
 = 28
 $\Rightarrow | k (k - 2) + 3k (5 + k) + 1 (10 + k^2) | =$
 $\Rightarrow 5k^2 + 13k + 10 = \pm 56$
(i) $5k^2 + 13k + 66 = 0$
 $\because D < 0$
 \therefore No real root
(ii) $5k^2 + 13k - 46 = 0$
 $5k^2 + 23k - 10k - 46 = 0$
 $\Rightarrow (5k + 23) (k - 2) = 0 \Rightarrow k = 2$ ($\because k \in I$)
 \therefore points are = (2, -6), (5, 2) and (-2, 2)
 \therefore equation of altitude through $A \Rightarrow x = 2$
and equation of altitude through $B \Rightarrow y - 2 = +(\frac{1}{2}) (x - 5)$

for point of orthocentre x = 2 and y – 2 = $\frac{1}{2}$ (– 3) \Rightarrow y = $\frac{1}{2}$

$$\therefore \text{ Orthocentre} = \left(2, \frac{1}{2}\right). \text{ Ans.}$$

Area = $\frac{1}{2}r^2\theta = \frac{1}{2}r^2\left(\frac{20-2r}{r}\right)$

7. Twenty meters of wire is available for fencing off a flower-bed in the form of a circular sector. Then the maximum area (in sq. m) of the flower-bed, is

NDATI

(A) 12.5 (B) 10 (C) 25 (D) 30

Ans. [C]

Sol. ::
$$2r + r\theta = 20$$

$$A = \frac{1}{2} r (20 - 2r) = 10r - r^{2}$$

$$\therefore \frac{dA}{dr} = 10 - 2r$$

$$\therefore \frac{dA}{dr} = 0 \text{ at } r = 5 \text{ and having a maximum as } \frac{d^{2}A}{dr^{2}} \text{ is negative.}$$

$$\therefore A_{\text{max}} = 10 \times 5 - 5^2 = 25$$
. **Ans.**

8. The area (in sq. units) of the region {(x, y) : $x \ge 0$, $x + y \le 3$, $x^2 \le 4y$ and $y \le 1 + \sqrt{x}$ } is

(A)
$$\frac{59}{12}$$
 (B) $\frac{3}{2}$ (C) $\frac{7}{3}$ (D) $\frac{5}{2}$

Ans. [D]

Sol. Required area
$$\int_{0}^{1} (1 + \sqrt{x}) dx + \int_{1}^{2} (3 - x) dx - \int_{0}^{2} \frac{x^{2}}{4} dx$$

$$=\frac{5}{3}+4-\frac{5}{2}-\frac{2}{3}=\frac{5}{2}$$
. Ans

9. If the image of the point P (1, -2, 3) in the plane, 2x + 3y - 4z + 22 = 0 measured parallel to the line,

$$\frac{x}{1} = \frac{y}{4} = \frac{z}{5}$$
 is Q, then PQ is equal to
(A) $3\sqrt{5}$ (B) $2\sqrt{42}$ (C) $\sqrt{42}$ (D) $6\sqrt{5}$

- Ans. [B]
- **Sol.** Equation of line parallel to given line and passing through P(1, -2, 3) will be

$$\frac{x-1}{1} = \frac{y+2}{4} = \frac{z-3}{5} = \lambda$$

Let its point of intersection with plane 2x + 3y - 4z + 22 = 0 be M ($\lambda + 1, 4\lambda - 2, 5\lambda + 3$)

OUNE

- :: It satisfies the plane
- $\therefore 2\lambda + 2 + 12\lambda 6 20\lambda 12 + 22 = 0$

$$\Rightarrow$$
 - 6 λ + 6 = 0 \Rightarrow λ = 1

- ∴ Point m = (2, 2, 8)
- Let Q (α , β , γ) be image.
- \therefore mid-point of PQ will be point M.

3

$$\therefore \frac{\alpha+1}{2} = 2 \Rightarrow \alpha =$$

.

$$\frac{\beta-2}{2} = 2 \Rightarrow \beta = 6 \qquad \text{and} \quad \frac{\gamma+3}{2} = 8 \Rightarrow \gamma = 13.$$

:. Point Q =
$$\sqrt{2^2 + 8^2 + 10^2} = \sqrt{168} = 2\sqrt{42}$$
. Ans.

10. If for $x \in \left(0, \frac{1}{4}\right)$, the derivative of $\tan^{-1}\left(\frac{6x\sqrt{x}}{1-9x^3}\right)$ is $\sqrt{x} \cdot g(x)$, then g(x) equals

(A)
$$\frac{9}{1+9x^3}$$
 (B) $\frac{3x\sqrt{x}}{1-9x^3}$ (C) $\frac{3x}{1-9x^3}$ (D) $\frac{3}{1+9x^3}$

Ans. [A]

Sol. Given function =
$$f(x) = \tan^{-1}\left(\frac{6x\sqrt{x}}{1-9x^3}\right), x \in \left(0, \frac{1}{4}\right)$$

$$=2 \tan^{-1}(3x\sqrt{x}) , x \in \left(0, \frac{1}{4}\right)$$

$$\therefore \text{ derivative} = \frac{2}{1+9x^3} \times 3 \cdot \frac{3x^{\frac{1}{2}}}{2} = \frac{9}{1+9x^3} \times 3 \cdot \frac{3x^{\frac{1}{2}}}{2} = \frac{9\sqrt{x}}{1+9x^3} = \sqrt{x} g(x)$$

$$\therefore g(x) = \frac{9}{1+9x^3} \text{ Ans.}$$

11. If $(2 + \sin x) + (y + 1) \cos x = 0$ and y(0) = 1, then is equal to

(A)
$$\frac{1}{3}$$
 (B) $\frac{-2}{3}$ (C) $\frac{-1}{3}$ (D) $\frac{4}{3}$

Sol.
$$(2 + \sin x) \frac{dy}{dx} + (y + 1) \cos x = 0, y(0) = 1, y(\frac{\pi}{2}) = ?$$

$$\frac{dy}{y+1} + \frac{\cos x}{2 + \sin x} dx = 0$$

$$\ln (y+1) + \ln (2 + \sin x) = \ln C$$

$$\ln \{(y+1) (2 + \sin x)\} = \ln C$$

$$(y+1) (2 + \sin x) = C$$

$$(y+1) (2 + \sin x) = C$$

$$x = 0, y = 1$$

$$\Rightarrow (2) (2) = C \Rightarrow C = 4.$$

$$y + 1 = \frac{4}{2 + \sin x}$$

$$Putx = \frac{\pi}{2}$$

$$y + 1 = \frac{4}{2 + 1} = \frac{4}{3}.$$

$$y\left(\frac{\pi}{2}\right) = \frac{1}{3}.$$
 Ans.

12. Let a vertical tower AB have its end A on the level ground. Let C be the mid-point of AB and P be a point on the ground such that AP = 2AB. If \angle BPC = β , then tan β is equal to

OUNDATI

13. If
$$A = \begin{bmatrix} 2 & -3 \\ -4 & 1 \end{bmatrix}$$
, then adj $(3A^2 + 12A)$ is equal to
(A) $\begin{bmatrix} 72 & -83 \\ -63 & 51 \end{bmatrix}$ (B) $\begin{bmatrix} 51 & 63 \\ 44 & 72 \end{bmatrix}$ (C) $\begin{bmatrix} 51 & 84 \\ 63 & 72 \end{bmatrix}$ (D) $\begin{bmatrix} 72 & 63 \\ -84 & 51 \end{bmatrix}$
Ans. [B]
Sol. $A^2 = \begin{bmatrix} 2 & -3 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} 2 & -3 \\ -4 & 1 \end{bmatrix} = \begin{bmatrix} 16 & -9 \\ 12 & 13 \end{bmatrix}$
 $X = 3A^2 + 12A = 3 \begin{bmatrix} 16 & -9 \\ -12 & 13 \end{bmatrix} + 12 \begin{bmatrix} 2 & -3 \\ -4 & 1 \end{bmatrix} = \begin{bmatrix} 72 & -63 \\ -84 & 51 \end{bmatrix}$
adj $(3A^2 + 12A) = adj$ (X) $= \begin{bmatrix} 51 & 63 \\ 84 & 72 \end{bmatrix}$ Ans.
14. For any three positive real numbers a, b and c, 9(25a^2 + b^2) + 25(c^2 - 3ac) = 15b (3a + c). Then
(A) b, c and a are in G.P. (B) b, c and a are in A.P.
(C) a, b and c are in A.P. (D) a, b and c are in G.P.
(15a)^2 + (3b)^2 + (5c)^2 - 75ac = 45ab + 15bc
(15a)^2 + (3b)^2 + (5c)^2 - 75ac = 45ab + 15bc
(15a)^2 + (3b)^2 + (5c)^2 - 45ab - 15bc - 75ac = 0
 $\therefore a^2 + b^2 + c^2 - ab - bc - ca = 0 \Rightarrow a = b = c$
then 15a = 3b = 5c = k (let)
 $a = \frac{k}{15} \cdot b = \frac{k}{3} \cdot c = \frac{k}{5}$
Hence, $2c = a + b$.
 $\therefore b, c$ and a are in A.P.
15. The distance of the point (1, 3, -7) from the plane passing through the point (1, -1, -1) having normal
perpendicular to both the lines: $\frac{x-1}{1} - \frac{y+2}{-2} - \frac{z-4}{-3}$ and $= = \frac{x-2}{2} - \frac{y+1}{-1} = \frac{z+7}{-1}$ is
(A) $\frac{20}{\sqrt{74}}$ (B) $\frac{10}{\sqrt{33}}$ (C) $\frac{5}{\sqrt{53}}$ (D) $\frac{10}{\sqrt{74}}$
Ans. [B]
Sol. Equation of plane: a $(x - 1) + b (y + 1) + c (z + 1) = 0$ this plane perpendicular to given two lines, then a
 $-2b + 3c = 0$
 $2a - b - c = 0$

then equation of plane is 5(x - 1) + 7(y + 1) + 3(z + 1) = 0

5x + 7y + 3z + 5 = 0

$$d = \left| \frac{5 + 21 - 21 + 5}{\sqrt{25 + 49 + 9}} \right| = \frac{10}{\sqrt{83}}.$$
 Ans

16. Let $I_n = \int tan^n x \, dx$, (n > 1). If $I_4 + I_6 = a tan^5 x + bx^5 + C$, where C is a constant of integration, then the ordered pair (a, b) is equal to

$$(A)\left(\frac{-1}{5},1\right) \qquad (B)\left(\frac{1}{5},0\right) \qquad (C)\left(\frac{1}{5},-1\right) \qquad (D)\left(\frac{-1}{5},0\right)$$

Ans. [B]

Sol.
$$I_n = \int \tan^n x \, dx$$
, $(n > 1)$
 $I_4 + I_6 = \operatorname{atan}^5 x + bx^5 + C$
 $I_6 + \int \tan^6 x \, dx = \int \tan^4 x (\sec^2 x - 1) \, dx = \int \tan^4 x \sec^2 x \, dx$
 $I_6 + I_4 = \int \tan^4 x \sec^2 x \, dx = \frac{\tan^5 x}{5} + C$
 $a = \frac{1}{5}, b = 0.$

17. The eccentricity of an ellipse whose centre is at the origin is $\frac{1}{2}$. If one of its directrices is x = -4, then

the equation of the normal to it at $\left(1, \frac{3}{2}\right)$ is

(A)
$$2y - x = 2$$
 (B) $4x - 2y = 1$ (C) $4x + 2y = 7$ (D) $x + 2y = 4$

Ans. [B]

Sol.
$$e = \frac{1}{2}$$

Equation of directrices $x = \frac{-a}{e} = -4 \Rightarrow 2a = 4 \Rightarrow a = 2$

$$b^{2} = a^{2} (1 - e^{2}) = 4 (1 - \frac{1}{4}) = 3$$

Equation of ellipse $\frac{x^2}{4} + \frac{y^2}{3} = 1$

Normal at
$$\left(1, \frac{3}{2}\right), \frac{2x}{4} + \frac{2y}{3} \cdot \frac{dy}{dx} = 0$$

 $\frac{1}{4} + \left(\frac{dy}{2}\right) = 0$

$$\overline{2}^{+} \left(\frac{dx}{dx} \right)^{-0}$$
$$M_{T} = \frac{-1}{2}; M_{normal} = 2$$

18.

Equation of normal $y - \frac{3}{2} = 2(x - 1); 2y - 3 = 4x - 4$ \Rightarrow 4x - 2y - 1 = 0. **Ans.** A hyperbola passes through the point P ($\sqrt{2}$, $\sqrt{3}$) and has foci at (± 2, 0). Then the tangent to this hyperbola at P also passes through the point (C) $(\sqrt{3}, \sqrt{2})$ (D) $(-\sqrt{2}, -\sqrt{3})$ (A) $(3\sqrt{2}, 2\sqrt{3})$ (B) $(2\sqrt{2}, 3\sqrt{3})$ [B] Ans. Hyperbola P $(\sqrt{2}, \sqrt{3})$, foci $(\pm 2, 0)$ Sol. $\pm ae = \pm 2 \Rightarrow ae = 2$ (1) Let hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1, \frac{2}{a^2} - \frac{3}{b^2} = 1$ (2) $b^{2} = a^{2} (e^{2} - 1) \Longrightarrow b^{2} = (ae)^{2} - a^{2}$ FOUNDATIC $b^2 = 4 - a^2$(3) Put in (ii) $\frac{2}{a^2} - \frac{3}{4a^2} = 1$ $8 - 2a^2 - 3a^2 = a^2 (4 - a^2)$ $8 - 5a^2 = 4a^2 - a^4$ $a^4 - 9a^2 + 8 = 0$ THE $a^{2} = 1$, $a^{2} = 8$, reject from equation (iii) $\therefore a^2 = 1, b^2 = 3$ Hyperbola is $\frac{x^2}{1} - \frac{y^2}{3} = 1$. Tangent to the hyperbola at $P(\sqrt{2}, \sqrt{3})$ is $\sqrt{2} x - \frac{\sqrt{3} y}{3} = 1$ $\Rightarrow 3\sqrt{2} x - \sqrt{3} y = 3$ $\Rightarrow \sqrt{6} x - y = \sqrt{3}$ $(2\sqrt{2}, 3\sqrt{3})$ satisfies the above tangent. The function $f: \mathbb{R} \to \left[\frac{-1}{2}, \frac{1}{2}\right]$ defined as $f(x) = \frac{x}{1+x^2}$, is (A) invertible (B) injective but not surjective

(C) surjective but not injective

(D) neither injective nor surjective

Ans. [C]

19.

Sol. f:
$$\mathbb{R} \to \left[\frac{-1}{2}, \frac{1}{2}\right]$$

f(x) = $\frac{x}{1+x^2}$
Domain x $\in \mathbb{R}$
f'(x) = $\frac{(1+x^2)-x(2x)}{(1+x^2)^2} = \frac{1-x^2}{(1+x^2)^2}$
Many one
Range: y + yx² = x \Rightarrow yx² - x + y = 0, D > 0; x $\in \mathbb{R}$
1 - 4y² $\ge 0 \Rightarrow 4y^2 - 1 \le 0 \Rightarrow$ y $\in \left[\frac{-1}{2}, \frac{1}{2}\right]$ onto
not injective but surjective.
Graph of f(x) is
20. $\lim_{x \to \frac{1}{2}} \frac{\cos(x - \cos x)}{(x - 2x)^3}$ equals
(A) $\frac{1}{24}$ (B) $\frac{1}{16}$ (C) $\frac{1}{8}$ (D) $\frac{1}{4}$
Ans. [B]
Sol. $\lim_{x \to \frac{1}{2}} \frac{\cot x - \cos x}{(x - 2x)^3}$ equals
 $\frac{1}{12} \frac{1}{12} \frac{$

 $\vec{a} \times \vec{b} = 2\hat{i} - 2\hat{j} + \hat{k}$ (1)

 $\Rightarrow \left| \vec{a} \times \vec{b} \right| = 3$

Now, $\left| (\vec{a} \times \vec{b}) \times \vec{c} \right| = \left| (\vec{a} \times \vec{b}) \right| |\vec{c}| = \sin \theta = 3$

 $\Rightarrow |3| |\vec{c}| \sin 30^\circ = 3 \Rightarrow |\vec{c}| = 2 \qquad \dots \dots (2)$

Again given $|\vec{c} - \vec{a}| = 3$, squaring both sides

 $|\vec{c}|^2 + |\vec{a}|^2 - 2 \vec{a} \cdot \vec{c} = 9$

 $|2|^{2} + |3|^{2} - 2\vec{a}\cdot\vec{c} = 9 \Rightarrow 4 = 2\vec{a}\cdot\vec{c} \Rightarrow \vec{a}\cdot\vec{c} = 2.$ Ans.

22. The normal to the curve y(x - 2)(x - 3) = x + 6 at the point where the curve intersects the y-axis passes through the point

 $\frac{-1}{3}$

.....(1)

 $(\mathsf{D})\left(\frac{1}{2},\frac{1}{3}\right)$

OUNDATIK

$(A)\left(\frac{-1}{2},\frac{-1}{2}\right)$	$(B)\left(\frac{1}{2},\frac{1}{2}\right)$	(C) $\left(\frac{1}{2}\right)$
---	---	--------------------------------

Ans. [B]

Sol. Given curve $y \times (x - 2) (x - 3) = (x + 6)$

Let required point is P, where curve intersects y-axis.

For P, put x = $0 \Rightarrow y = 1$, so P(0, 1)

Equation (1) differentiate w.r.t. x

$$(x-2) (x-3) \frac{dy}{dx} + y (2x-5) = 1$$
$$\Rightarrow \left(\frac{dy}{dx}\right)_{(0,1)} = 1$$

Slope of normal = -1

Equation of normal at P (0, 1) \Rightarrow (y - y₁) = m (x - x₁)

$$y - 1 = -1 (x - 0) \Rightarrow x + y = 1$$
(2)

By option $\left(\frac{1}{2}, \frac{1}{2}\right)$ will satisfy x + y = 1.

23. If two different numbers are taken from the set {0, 1, 2, 3,, 10}; then the probability that their sum as well as absolute difference are both multiple of 4, is

(A)
$$\frac{6}{55}$$
 (B) $\frac{12}{55}$ (C) $\frac{14}{45}$ (D) $\frac{7}{55}$

Ans. [A]

Sol. Given set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10}

A + Q favorable cases are: (0, 4), (0, 8), (2, 6), (2, 10), (4, 8), (6, 10)

$$p(E) = \frac{Favorable outcomes}{Total outcomes} = \frac{6}{{}^{11}C_2} = \frac{6}{55}.$$
 Ans.

24. A man X has 7 friends, 4 of them are ladies and 3 are men. His wife Y also has 7 friends, 3 of them are ladies and 4 are men. Assume X and Y have no common friends. Then the total number of ways in which

X and Y together can throw a party inviting 3 ladies and 3 men, so that 3 friends of each of X and Y are in this party, is

(A) 485 (B) 468 (C) 469 (D) 484

Ans. [A]

Sol. $M \rightarrow Men, L \rightarrow Ladies$

	Ι	Ш		IV
v	3M	2M	1M	0M
^	0L	1L	2L	3L
v	3L	2L	1L	0L
I	0M	1M	2M	3M

X has 7 friends 3 men and 4 ladies

Y has 7 friends 4 men and 3 ladies.

Total number of ways

= 1 + 144 + 324 + 16 = 485. **Ans.**

$$\underbrace{{}^{3}\mathbf{C}_{3} \times {}^{4}\mathbf{C}_{0} \times {}^{3}\mathbf{C}_{3} \times {}^{4}\mathbf{C}_{0}}_{I}}_{III} + \underbrace{{}^{3}\mathbf{C}_{2} \times {}^{4}\mathbf{C}_{1} \times {}^{4}\mathbf{C}_{1} \times {}^{3}\mathbf{C}_{2}}_{III} + \underbrace{{}^{3}\mathbf{C}_{1} \times {}^{4}\mathbf{C}_{2} \times {}^{3}\mathbf{C}_{1} \times {}^{4}\mathbf{C}_{2}}_{IIII} + \underbrace{{}^{3}\mathbf{C}_{0} \times {}^{4}\mathbf{C}_{3} \times {}^{3}\mathbf{C}_{0} \times {}^{4}\mathbf{C}_{3}}_{IIII}$$

25. The value of $\binom{2^{1}C_{1} - {}^{10}C_{1}}{(B)} + \binom{2^{1}C_{2} - {}^{10}C_{2}}{(C)} + \binom{2^{1}C_{3} - {}^{10}C_{3}}{(C)} + \binom{2^{1}C_{4} - {}^{10}C_{4}}{(D)} + \dots + \binom{2^{1}C_{10} - {}^{10}C_{10}}{(D)}$ is (A) $2^{2^{1}} - 2^{11}$ (B) $2^{2^{1}} - 2^{10}$ (C) $2^{2^{0}} - 2^{9}$ (D) $2^{2^{0}} - 2^{10}$

Ans. [D]

Sol. Let ${}^{21}C_1 + {}^{21}C_2 + {}^{21}C_3 + {}^{21}C_4 + \dots + {}^{21}C_{10} = A$

$${}^{10}C_1 + {}^{10}C_2 + {}^{10}C_3 + {}^{10}C_4 + \dots + {}^{10}C_{10} = B$$

By solving A

$${}^{21}C_{0} + {}^{21}C_{1} + {}^{21}C_{2} + {}^{21}C_{4} + \dots + {}^{21}C_{21} = 2^{21}$$

$$1 + {}^{21}C_{1} + {}^{21}C_{2} + \dots + {}^{21}C_{10} + {}^{21}C_{11} + {}^{21}C_{12} + \dots + {}^{21}C_{20} + 1 = 2 ({}^{21}C_{1} + {}^{21}C_{2} + \dots + {}^{21}C_{10}) = 2^{20} - 2$$

$${}^{21}C_{1} + {}^{21}C_{2} + \dots + {}^{21}C_{10} = 2^{20} - 1 \qquad \dots \dots (1)$$
Similarly and solving for B
$${}^{10}C_{0} + {}^{10}C_{1} + \dots + {}^{10}C_{10} = 2^{10}$$

$${}^{10}C_{1} + {}^{10}C_{2} + \dots + {}^{10}C_{10} = 2^{20} - 1 \qquad \dots \dots (2)$$

$$(1) - (2)$$

$$A - B = 2^{20} - 2^{10}.$$

26.

A box contains 15 green and 10 yellow balls. If 10 balls are randomly drawn, one-by-one, with replacement, then the variance of the number of green balls drawn is

2²¹

(A)
$$\frac{12}{5}$$
 (B) 6 (C) 4 (D) $\frac{6}{25}$

Ans.	[A]					
Sol.	$P = \frac{15}{25} = \frac{3}{5}$					
	Hence, q = $\frac{2}{5}$					
	n = 10					
	So, $\sigma^2 = npq = \frac{3}{5} \times \frac{2}{5} \times \frac{2}{5}$	$10 = \frac{12}{5}$. Ans.				
27.	Let a, b, $c \in R$. If $f(x) =$	$ax^2 + bx + c$ is such that	a + b + c = 3 and	•		
	f(x + y) = f(x) + f(y) + x	y, $\forall x, y \in R$, then $\sum_{n=1}^{10} f(n)$) is equal to			
	(A) 330	(B) 165	(C) 190	(D) 255		
Ans.	[A]			\sim		
Sol.	Putting y = 1					
	f(x + 1) - f(x) = 3 + x					
	$a(x + 1)^{2} + b(x + 1) + c$	$-ax^{2}-bx-c=3+x$		A		
	2ax + a + b = 3 + x			O '		
	\Rightarrow a = $\frac{1}{2}$; a + b = 3	$\Rightarrow b = \frac{5}{2}; c = 0$				
	$f(x) = \frac{1}{2}x^2 + \frac{5}{2}x$					
	Now, $f(1) + f(2) + f(3) + f(4) + f(5) + f(6) + f(7) + f(8) + f(9) + f(10)$					
	$\left(\frac{1}{2} + \frac{5}{2}\right) + \left(\frac{4}{2} + \frac{10}{2}\right) + \dots + \left(\frac{100}{2} + \frac{50}{2}\right) = \left(\frac{1}{2} + \frac{4}{2} + \frac{9}{2} + \dots + \frac{100}{2}\right) + \left(\frac{5}{2} + \frac{10}{2} + \dots + \frac{100}{2}\right) + \left(\frac{100}{2} + \frac{10}{2} + \frac{10}{2}\right) + \left(\frac{100}{2} + \frac{10}$					
	$= = \frac{1}{2} \left(\frac{10 (10 + 1)(20 + 1)}{6} \right)$	$(+1)$) + $\frac{5}{2}$ $\begin{bmatrix} 10(11) \\ 2 \end{bmatrix}$ = 330	Ans.			
Aliter:	Given $f(x) = ax^2 + bx + bx$	С				
	such that $a + b + c = 3$					
	and $f(x + y) = f(x) + f(y)$) + xy, ∀ x ∈ R	(1)			
	Equation (1) differentia	te w.r.t. x				
	f '(x + y) = f '(x) + y		(2)			
	Equation (1) again diffe	erentiate w.r.t. y				
	f'(x + y) = f'(y) + x	-	(3)			
	(2) = (3)					
	f'(x) + y = f'(y) + x					
	f'(x) - x = f'(y) - y = k					

28.

Sol.

Integrate f'(x) - x = k w.r.t. x

$$\int (f'(x) - x) dx - \int k dx$$

$$f(x) = kx + \frac{x^2}{2} + C \qquad \dots (4)$$
Compare it by f(x) = $ax^2 + bx + C$

$$f(0) = C = 0; f(1) = k + \frac{1}{2} + C = 3 \Rightarrow k = \frac{5}{2} = b$$

$$\Rightarrow a = \frac{1}{2}, b = 3 - \frac{1}{2} = \frac{5}{2}, C = 0$$
So, $f(x) = \frac{x^2}{2} + \frac{5x}{2}$
Now, $f(1) + f(2) + f(3) + f(4) + f(5) + f(6) + f(7) + f(8) + f(9) + f(10)$

$$\left(\frac{1}{2} + \frac{5}{2}\right) + \left(\frac{4}{2} + \frac{10}{2}\right) + \dots + \left(\frac{100}{2} + \frac{50}{2}\right) - \left(\frac{1}{2} + \frac{4}{2} + \frac{9}{2} + \dots + \frac{100}{2}\right) + \left(\frac{5}{2} + \frac{10}{2} - \dots + \frac{50}{2}\right)$$

$$= \frac{1}{2} \left(\frac{10(10 - 10(20 + 1))}{6}\right) + \frac{5}{2} \left(\frac{10(11)}{2}\right) = 330. \text{ Ans.}$$
28. The radius of a circle, having minimum area, which touches the curve $y = 4 - x^2$ and the lines, $y = |x|$ is
(A) $2 \left(\sqrt{2} + 1\right)$
(B) $2 \left(\sqrt{2} - 1\right)$
(C) $4 \left(\sqrt{2} - 1\right)$
(D) $4 \left(\sqrt{2} + 1\right)$
Ans. [C]
Sol. Let equation of the circle be
 $x^2 + (y - 1)^2 = r^2$
 $\dots (1)$
 $y = 4 - x^2$
Now, $D = 0$
 $\Rightarrow (2\sqrt{2} r + 1)^2 - 4(r^2 + 4) = 0$
Ar² + $4\sqrt{2}r - 15 = 0$
 $\Rightarrow 4r^2 + 2 \cdot 2\sqrt{2}r + 2 = 17$
 $\Rightarrow (2r + \sqrt{2})^2 = 17$
 $\Rightarrow 2r + \sqrt{2} = \sqrt{17}$
 $r = \frac{\sqrt{17} - \sqrt{2}}{2} = 1.3$
Again, when the circle touches the parabola at (0, 4) then
 $4 - 1 = r$
 $\dots (0)$

MENIIT

$$\begin{split} t &= r\sqrt{2} \qquad ...(ii) \\ from (i) and (ii) \\ 4 &= r\sqrt{2} = r \Rightarrow r = \frac{4}{\sqrt{2}+1} \\ \Rightarrow r &= 4(\sqrt{2}-1)...+1.856. \\ \textbf{29.} \quad \text{If, for a positive integer n, the quadratic equation,} \\ x &(x+1) + (x+1) (x+2) + + (x+n-1) (x+n) = 10n \\ has two consecutive integral solutions, then n is equal to \\ (A) 12 (B) 9 (C) 10 (D) 11 \\ \textbf{Ans. [D]} \\ \textbf{Sol.} &(x^2 + x) + (x^2 + 3x + 2) + (x^2 + 5x + 6) + + (x^2 + (2n-1)x + n (n-1)) = 10n \\ Let & S = 2 + 6 + 12 + + n(n-1)) = 10n \\ Let & S = 2 + 6 + 12 + + T_{n-2} + T_{n-1} \\ \text{Subtract} & \frac{S = 2 + 6 + 12 + + n(n-1) = 10n \\ Let & S = 2 + 6 + 12 + + T_{n-2} + T_{n-1} \\ \text{Subtract} & \frac{S = 2 + 6 + + upto (n-1) terms} \\ T_{n-1} = 2 (1 + 2 + 3 + (n-1) terms) \\ T_{n-1} = 2 (1 + 2 + 3 + (n-1) terms) \\ T_{n-1} = \frac{2 (n-1)n}{2} = n (n-1) \\ \sum T_{n-1} = \sum n^2 - \sum n - \frac{n (n+1)(2n+1)}{6} = 10n \\ x^2 + nx + \frac{n^2 - 1}{3} = 10 \Rightarrow 3h^2 + 3nx + n^2 - 1 = 30 \\ \Rightarrow 3x^2 + 3nx + n^2 - 31 = 0 \\ \because \text{ roots are consecutive number} \\ \text{So.} (n(-\beta)) = 1 = (n + \beta)^2 - 4\alpha\beta = 1 = (-n)^2 - 4 \left(\frac{n^2 - 31}{3}\right) = 1 \\ \Rightarrow 3n^2 - 4n^2 + 124 = 3 \Rightarrow n^2 = 121 \Rightarrow n = 11. \text{ Ans.} \\ \textbf{30.} \text{ The integral } \int_{\frac{3}{4}}^{\frac{3}{4}} \frac{dx}{1 + \cos x} \text{ is equal to} \\ \textbf{Ans.} (B) = 1 \\ \textbf{Ans.} (B) = 1 \\ \textbf{Cost} = \frac{3x}{4} \frac{dx}{1 + \cos x} = \frac{3x}{2} \frac{dx}{4} = \frac{1}{2} \left[\frac{\tan \frac{x}{2}}{\frac{1}{2}}\right]_{\frac{x}{4}}^{\frac{3x}{4}} = \frac{1}{2} \left[\left(\tan \frac{3\pi}{8} - \tan \frac{\pi}{8}\right) \times 2\right] \\ - (\sqrt{2} + 1) - (\sqrt{2} - 1) = 2 \text{ Ans.} \end{aligned}$$

PART-B-PHYSICS

31. A radioactive nucleus A with a half life T, decays into a nucleus B. At t= 0, there is no nucleus B. At sometime t, the ratio of the number of B to that of A is 0.3. Then, t is given by:

(A)
$$t = \frac{T}{\log(1.3)}$$
 (B) $t = \frac{T}{2} \frac{\log 2}{\log 1.3}$ (C) $t = T \frac{\log 1.3}{\log 2}$ (D) $t = T \log (1.3)$

Ans. [C]

Sol. $A \rightarrow B$, at t = 0, $N_B = 0$, $N_A^{-1} = N_A e^{-\lambda t}$ $N_B = N_A - N_A^{-1}$ $N_B = N_A (1 - e^{-\lambda t})$ $\Rightarrow \frac{N_B}{N_A} = 1 - e^{-\lambda t}$ $\Rightarrow 0.3 = 1 - e^{-\lambda t}$ $\Rightarrow 0.3 = 1 - e^{-\lambda t}$ $\Rightarrow t = \frac{\ln \frac{10}{7}}{\lambda} = \frac{T \ln \frac{10}{7}}{\ln 2}$ $t = T \frac{\ln 1.3}{\ln 2}$

32. The following observations were taken for determining surface tension T of water by capillary method: diameter of capillary, D = 1.25×10^{-2} m rise of water, h= 1.45×10^{-2} m. Using g = 9.80 m/ s² and the simplified relation T = $\frac{\text{rhg}}{2} \times 10^{3}$ N/m, the possible error in surface tension is closest to:

OUNDATI

(A) 10% (B) 0.15% (C) 1.5% (D) 2.4%

Ans. [C]

Sol. $\frac{\Delta T}{T} = \frac{\Delta r}{r} + \frac{\Delta \lambda}{\lambda}$

 ℓ C = 0.01, because reading is upto 2nd digit

100 ×
$$\left(\frac{\Delta T}{T}\right) = \left(\frac{0.01}{1.25} + \frac{0.01}{1.45}\right) \times 100$$

= 1.5 %

33. An electron beam is accelerated by a potential difference V to hit a metallic target to produce X-rays. It produces continuous as well as characteristic X-rays. If λ_{min} is the smallest possible wavelength of X-ray in the spectrum, the variation of log λ_{min} with log V is correctly represented in:

35. A slender uniform rod of mass M and length ℓ is pivoted at one end so that it can rotate in a vertical plane (see figure). There is negligible friction at the pivot. The free end is held vertically above the pivot and then released. The angular acceleration of the rod when it makes an angle θ with the vertical is:

Ans. [C]

38. In amplitude modulation, sinusoidal carrier frequency used is denoted by ω_c and the signal frequency is denoted by ω_m . The bandwidth ($\Delta \omega_m$) of the signal is such that $\Delta \omega_m << \omega_c$. Which of the following frequencies is not contained in the modulated wave?

(A)
$$\omega_{\rm c} - \omega_{\rm m}$$
 (B) $\omega_{\rm m}$ (C) $\omega_{\rm c}$ (D) $\omega_{\rm m} + \omega_{\rm c}$

Ans. [B]

Sol. Modulated signal can be written as

$$\begin{split} &C_m(t) = (A_c + A_m \sin \omega_m t) \sin \omega_c t \\ \Rightarrow &C_m(t) = A_c \sin \omega_c t + \frac{\mu A_c}{2} \cos(\omega_c - \omega_m) t - \frac{\mu A_c}{2} \cos(\omega_c + \omega_m) t \\ &\text{where } \mu = \frac{A_m}{A_c} \end{split}$$

The temperature of an open room of volume 30 m³ increases from 17°C to 27°C due to the sunshine. 39. The atmospheric pressure in the room remains 1×10^5 Pa. If n_i and n_f are the number of molecules in the room before and after heating, then $n_f - n_i$ will be:

(A)
$$-2.5 \times 10^{25}$$
 (B) -1.61×10^{23} (C) 1.38×10^{23} (D) 2.5×10^{25}

Ans. [A]

Sol. We know

PV = nRT

$$n_{f} - n_{i} = \frac{PV}{R} \left(\frac{1}{T_{f}} - \frac{1}{T_{i}} \right)$$

$$n_{f} - n_{i} = \frac{PV}{R} \left(\frac{1}{T_{f}} - \frac{1}{T_{i}} \right)$$

$$n_{f} - n_{i} = 6.022 \times 10^{23} \times \frac{1 \times 10^{5} \times 30}{8.314} \left(\frac{1}{300} - \frac{1}{290} \right)$$

 $n_{f} - n_{i} = -2.5 \times 10^{25}$ molecules

40. In a Young's double slit experiment, slits are separated by 0.5 mm, and the screen is placed 150 cm away. A beam of light consisting of two wavelengths, 650 nm and 520 nm, is used to obtain interference fringes on the screen. The least distance from the common central maximum to the point where the bright fringes due to both the wavelengths coincide is:

(A) 15.6 mm (B) 1.56 mm (C) 7.8 mm (D) 9.75 mm
Ans. [C]
Sol.
$$\frac{n_1\lambda_1D}{d} = \frac{n_2\lambda_2D}{d}$$

 $\Rightarrow n_1 \lambda_1 = n_2 \lambda_2$
 $\Rightarrow \frac{n_1}{n_2} = \frac{520}{650}$
 $\Rightarrow \frac{n_1}{n_2} = \frac{4}{5}$
 $y_1 = \frac{n_1D\lambda_1}{d} = \frac{4 \times 650 \times 10^{-9} \times 150 \times 10^{-2}}{0.5 \times 10^{-3}}$
 $= 7.8 \text{ mm}$
41. A particle A of mass m and initial velocity v collides with a particle B of mass $\frac{m}{2}$ which is at rest. The

collision is head on, and elastic. The ratio of the de-Broglie wavelengths λ_A to λ_B after the collision is:

(A)
$$\frac{\lambda_A}{\lambda_B} = \frac{1}{2}$$
 (B) $\frac{\lambda_A}{\lambda_B} = \frac{1}{3}$ (C) $\frac{\lambda_A}{\lambda_B} = 2$ (D) $\frac{\lambda_A}{\lambda_B} = \frac{2}{3}$

Ans. [C]

41.

42.

43.

(D) 6.98 s

(D) 60°

FOUNDA

 $mv = mv_1 + \frac{m}{2}v_2$ Sol. $V = V_1 + \frac{V_2}{2}$...(1) $v_2 - v_1 = v$...(2) after sloving $V_1 = \frac{V}{3}$, $V_2 = \frac{4V}{3}$ $P_{A} = \frac{mv}{3}, P_{B} = \frac{m}{2}\frac{4v}{3} = \frac{2mv}{3}$ $\frac{\lambda_{A}}{\lambda_{B}} = \frac{b / P_{A}}{\lambda / P_{B}} = \frac{P_{B}}{P_{A}} = \frac{2mv}{3}\frac{3}{mv} = 2:1$ A magnetic needle of magnetic moment 6.7 × 10^{-2} Am² and moment of inertia 7.5 × 10^{-6} kg m² is performing simple harmonic oscillations in a magnetic field of 0.01 T. Time taken for 10 complete oscillations is (C) 8.89 s (A) 8.76 s (B) 6.65 s Ans. [B] $\alpha = \frac{BM}{I} \sin \theta$ Sol. $\cong \frac{\mathsf{BM}}{\mathsf{T}} \theta$ T-JEE $\omega = \sqrt{\frac{BM}{T}}$ $T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{I}{BM}}$ 6.65×10^{-1} s An electric dipole has a fixed dipole moment \vec{p} , which makes angle θ with respect to x-axis. When subjected to an electric field $\vec{E_1} = E\hat{i}$, it experiences a torque $\vec{T_1} = \tau \hat{k}$. When subjected to another electric field $\vec{E_2} = \sqrt{3}E_1\hat{j}$ it experiences a torque $\vec{T_2} = -\vec{T_1}$ The angle θ is (A) 90° (B) 30° (C) 45° Ans. [D] Sol. p Ē₁ = Eî $\vec{E}_2 = \sqrt{3}E_1\hat{i}$ $\vec{T_1} = \tau \hat{k}$ $T_{2} = -\vec{T}_{1}$

 $\vec{\mathsf{T}}_1 = \vec{\mathsf{P}} \times \vec{\mathsf{E}}_1 \qquad \qquad \mathsf{T}_2 = \vec{\mathsf{P}} \times \vec{\mathsf{E}}_2$

```
(P \cos \theta \hat{i} + P \sin \theta \hat{j}) \times E \hat{i}
```

= PE sin $\theta - \hat{k}$ T₂ = P E $\sqrt{3} \cos \theta \hat{k}$ Given PE $\sqrt{3} \cos \theta$ = PE sin θ tan $\theta = \sqrt{3}$ $\theta - 60^{\circ}$

44. In a coil of resistance 100 Ω , a current is induced by changing the magnetic flux through it as shown in the figure. The magnitude of change in flux through the coil is

24

48. A body is thrown vertically upwards. Which one of the following graphs correctly represent the velocity vs time?

Ans. [D]

49. A capacitance of 2 μF is required in an electrical circuit across a potential difference of 1.0 kV. A large number of 1 μF capacitors are available which can withstand a potential difference of not more than 300 V. The minimum number of capacitors required to achieve this is

(D) 24

FOUNDAT

- Ans. [A]
- Sol. For the system to with ston d 1 kv potential difference

300 ×4 = 1200 V it can with stond 1 KV also

For net capacitance 2 μ F

$$\frac{C}{4} = 2 \mu F$$

C = 8

minimum capacitors required = $8 \times 4 = 32$

50. In the given circuit diagram when the current reaches steady state in the circuit, the charge on the capacitor of capacitance C will be

L,

Ans. [D]

Sol. $i = \frac{E}{r + r_2}$

Potential difference across 'C'

= Potential difference across 'r₂'

$$= \frac{E}{r + r_2} r_2$$
$$q = \frac{CE}{r + r_2} r_2$$

- **51.** In a common emitter amplifier circuit using an n-p-n transistor, the phase difference between the input and the output voltages will be
 - (A) 180° (B) 45° (C) 90° (D) 135°

Ans. [A]

- **Sol.** In common emitter amplifier circuit, the output voltage is out of phase w.r.t. input voltage.
- 52. Which of the following statements is false?
 - (A) Kirchhoff's second law represents energy conservation
 - (B) Wheatstone bridge is the most sensitive when all the four resistances are of the same order of magnitude.
 - (C) In a balanced wheatstone bridge if the cell and the galvanometer are exchanged, the null point is disturbed.
 - (D) A rheostat can be used as a potential divider.
- Ans. [C]
- Sol. On changing the cell and galvanometer null point does not change
- **53.** A particle is executing simple harmonic motion with a time period T. At time t = 0, it is at its position of equilibrium. The kinetic energy time graph of the particle will look like

- Sol. K.E. become zero at -
- 54. An observer is moving with half the speed of light towards a stationary microwave source emitting waves at frequency 10 GHz. What is the frequency of the microwave measured by the observer? (speed of light = $3 \times 10^8 \text{ ms}^{-1}$)
 - (A) 15.3 GHz (B) 10.1 GHz (C) 12.1 GHz (D) 17.3 GHz
- **Ans**. [D]

Ans.

Sol. Assume the abserver and source are moving away from each other with relative velocity v (v is negetive if the abserver and the source are moving towards each other)

Ans.

Sol.

$$\frac{f_{s}}{f_{o}} = \sqrt{\frac{1+\beta}{1-\beta}} \qquad ...(1)$$

$$\beta = \frac{V}{2} = \frac{C/2}{2} = \frac{-1}{2} \qquad ...(2)$$

$$\beta = \frac{1}{c} = \frac{0.72}{C} = \frac{1}{2}$$

Putting (2) in (1)

f_o = 17.3 GHz

55. A man grows into a giant such that his linear dimensions increase by a factor of 9. Assuming that his density remains same, the stress in the leg will change by a factor of

(A)
$$\frac{1}{81}$$
 (B) 9 (C) $\frac{1}{9}$ (D) 81
[B]
Stress = $\frac{F}{A_{\ell}} = \frac{mg}{A_{\ell}}$
S = $\frac{mg}{A_{\ell}} = \frac{\delta_{L}A_{B}g}{A_{\ell}}$...(1)

$$S' = \frac{\delta(9\ell)(8\ell)A_{B}g}{81A_{\ell}} \qquad \dots (2)$$
$$\frac{S}{S'} = 9$$

56. When a current of 5 mA is passed through a galvanometer having a coil of resistance
$$15\Omega$$
, it shows full scale deflection. The value of the resistance to be put in series with the galvanometer to convert it into a voltmeter of range $0 - 10$ V is

(A) $4.005 \times 10^{3} \Omega$ (B) $1.985 \times 10^{3} \Omega$ (C) $2.045 \times 10^{3} \Omega$ (D) $2.535 \times 10^{3} \Omega$

Ans. [B]

$$10 = 5 \times 10^{-3} (15 + R)$$

R = 2000 - 15 = 1.985 × 10³ Ω

57. The variation of acceleration due to gravity g with distance d from centre of the earth is best represented by (R = Earth's radius)

Ans. [A]

Sol. $g_{\text{inside}} = \frac{\text{Gmr}}{\text{R}^3}$ $g_{\text{outside}} = \frac{\text{GM}}{r^2}$

58. An external pressure P is applied on a cube at 0° C so that it is equally compressed from all sides. K is the bulk modulus of the material of the cube and α is its coefficient of linear expansion. Suppose we want to bring the cube to its original size by heating. The temperature should be raised by

(A)
$$3PK\alpha$$
 (B) $\frac{P}{3\alpha K}$ (C) $\frac{P}{\alpha K}$ (D) $\frac{3\alpha}{PK}$

Ans. [B]

Sol.
$$\Delta P = -B\frac{\Delta V}{V}$$

 $\Delta V = \frac{-PV}{B}$, $B = K$ (given)
and, $\Delta V = V$ (3 α)t
 $\frac{PV}{k} = V$ (3 α) t \Rightarrow t = $\frac{P}{3ka}$

۸N /

59. A diverging lens with magnitude of focal length 25 cm is placed at a distance of 15 cm from a converging lens of magnitude of focal length 20 cm. A beam of parallel light falls on the diverging lens. The final image formed is

JAR

- (A) real and at a distance of 6 cm from the convergent lens
- (B) real and at a distance of 40 cm from convergent lens
- (C) virtual and at a distance of 40 cm from convergent lens
- (D) real and at a distance of 40 cm from the divergent lens.

Sol. $V = \frac{uf}{u+f}$ $= -\frac{40 \times 20}{-40 + 20}$

60. A body of mass $m = 10^{-2}$ kg is moving in a medium and experiences a frictional force $F = -kv^2$. Its initial speed is $v_0 = 10 \text{ ms}^{-1}$. If, after 10 s, its

energy is $\frac{1}{8}mv_0^2$, the value of k will be

(A) 10^{-1} kg m⁻¹s⁻¹ (B) 10^{-3} kg m⁻¹ (C) 10^{-3} kg s⁻¹ (D) 10^{-4} kg m⁻¹ [D]

1

Ans. [D]

Sol.
$$m \frac{dv}{dt} = -KV^2$$
 and $\frac{1}{2}mv_f^2 = \frac{1}{8}mv_0^2$
 $\int_{10}^{5} -m\frac{dv}{v^2} = \int_{0}^{10} +Kdg$
 $K^{-2}\left(\frac{1}{5} - \frac{1}{10}\right) = 10 K$
 $K = \frac{10^{-2}}{100} = 10^{-4} \text{ kg} / \text{m}^{-1}$

PART-C-CHEMISTRY

61.	1 gram of a carbonate (M ₂ CO ₃) on treatment with excess HCI produces 0.01186 mole of CO ₂ . The molar						
	mass of M_2CO_3 in g mol ⁻¹ is:						
	(A) 84.	3	(B) 118.6	(C) 11.86	(D) 1186		
Ans.	[A]						
Sol.	M ₂ CO ₃	$_{3}$ + 2HCI \longrightarrow 2N	$1CI + H_2O + CO_2$				
	${\sf n}_{{\sf M}_2{\sf CO}_3}$	$= n_{CO_2} = 0.0118$	6				
	0.0118	$36 \text{ mol} \longrightarrow 1 \text{ gm}$	1				
	1 mol -	$\longrightarrow \left(\frac{1}{0.01186}\right)^{\times}$	< 1)				
	= 84.3	g mol ⁻¹					
62.	Given	Given					
	$C_{(graphite)} + O_2(g) \rightarrow CO_2(g);$						
	$\Delta_{\rm r}{\rm H^o}$ =	– 393.5 kJ mol ⁻¹	1				
	H ₂ (g)	$\frac{1}{2} + O_2(g) \rightarrow H_2(g)$	D(I);		0.		
$\Delta_{\rm r} {\rm H}^{\rm o} = -285.8 \ {\rm kJ \ mol}^{-1};$							
	$CO_2(g) + 2H_2O(I) \rightarrow CH_4(g) + 2O_2(g);$ $\Delta_r H^o = +890.3 \text{ kJ mol}^{-1}$ Based on the above thermochemical equations, the value of $\Delta_r H^o$ at 298 K for the reaction $C_{(graphite)} + 2H_2(g) \rightarrow CH_4(g)$ will be:						
	(A) +144.0 kJ mol ⁻¹ (B) -74.8 kJ mol ⁻¹ (C) -144.0 kJ mol ⁻¹ (D) +74.8 kJ mol ⁻¹						
Ans.	[B]						
Sol.	(1)	$C_{(graphite)} + O_2 (g$	$g) \longrightarrow CO_2(g),$	$\Delta_{\rm r} {\rm H}^{\rm o} = - 393.5 ~{\rm kJ}~{\rm mol}^{-1}$			
	(2)	$H_2(g) + \frac{1}{2}O_2(g)$	$g) \longrightarrow H_2O(I),$	$\Delta_{\rm r} {\rm H}^{\rm o} = - 285.8 \text{ kJ mol}^{-1}$			
	(3)	CO ₂ (g) + 2H ₂ O	$O(I) \longrightarrow CH_4(g) + 2O_2(g)$), ∆ _r Hº = + 890.3 kJ mol [−]	I		
$C_{(graphite)} + 2H_2(g) \rightarrow CH_4(g)$							
		$\Delta_{\rm r} {\rm H}^{\rm o}$ = $-$ 393.5	- (2 × 285.8) + 890.3				
$= -74.8 \text{ kJ/mol}^{-1}$							

29

63. The freezing point of benzene decreases by 0.45°C when 0.2 g of acetic acid is added to 20 g of benzene. If acetic acid associates to form a dimer in benzene, percentage association of acetic acid in benzene will be: (K_f for benzene = 5.12 K kg mol⁻¹)
(A) 80.4% (B) 74.6% (C) 94.6% (D) 64.6%
Ans. [C]

Sol.	ΔT_{f} = 0.45	$CH_3COOH = 0.2 \text{ gm}$	$C_6H_6 = 20 \text{ gm}$			
	$m = \frac{0.2 / 60}{20} \times 1000 = \frac{1}{6}$	<u>1</u> 6				
	$\Delta T_f = i K_f \times m = 0.45 =$	$i \times 5.12 \times \frac{1}{6}$				
	i = 0.527					
	$i = 1 - \frac{\alpha}{2}$					
	$0.527 = 1 - \frac{\alpha}{2}$			10.		
	$\frac{\alpha}{2} = 0.473$			OP		
	α = 94.6 %					
64.	The most abundant ele	ments by mass in the bo	dy of a healthy human ad	ult are: Oxygen (61.4%); Carbon		
	(22.9%), Hydrogen (10.0%); and Nitrogen (2.6%). The weight which a 75 kg person would gain if all ¹ atoms are replaced by ² H atom is:					
	(A) 37.5 kg	(B) 7.5 kg	(C) 10 kg	(D) 15 kg		
Ans.	[B]					
Sol.	Gain in weight = $\left(\frac{75 \times 100}{100}\right)$	$\frac{10}{0} \times (M_{H^2} - M_{H^1}) = 7.5 \text{ k}$	g			
65.	∆U is equal to-					
	(A) Isobaric work	(B) Adiabatic work	(C) Isothermal work	(D) Isochoric work		
Ans.	[B]					
Sol.	$q = 0, \Delta U = w,$					
	In adiabatic process					
66.	The formation of which	of the following polymer	rs involves hydrolysis rea	ction?		
	(A) Bakelite	(B) Nylon 6, 6	(C) Terylene	(D) Nylon 6		
Ans.	[D]					

30

Ans. [A]

- Sol. Tyndall effect is observed only when
 - (i) The diameter of the dispersed particle is not much smaller than the wavelength of the light used.
 - (ii) The refractive indices of the dispersed phase and dispersion medium differ greatly in magnitude. so, (b) and (d) are correct.
- **69.** In the following reactions, ZnO is respectively acting as a/an:
 - (a) $ZnO + Na_2O \rightarrow Na_2ZnO_2$
 - (b) $ZnO + CO_2 \rightarrow ZnCO_3$
 - (A) base and base (B) acid and acid (C) acid and base (D) base and acid

Ans. [C]

Sol. $ZnO + Na_2O \longrightarrow Na_2ZnO_2$ (acid) (base) (salt) $ZnO + CO_2 \longrightarrow ZnCO_3$ (base) (acid) (Salt)

70. Which of the following compounds will behave as a reducing sugar in an aqueous KOH solution?

73. On treatment of 100 mL of 0.1 M solution of CoCl₃. $6H_2O$ with excess AgNO₃; 1.2×10^{22} ions are precipitated. The complex is:

(A) [Co(H ₂ O) ₃ Cl ₃].3H ₂ O	(B) [Co(H ₂ O) ₆]Cl ₃
(C) [Co(H ₂ O) ₅ Cl]Cl ₂ .H ₂ O	(D) [Co(H ₂ O) ₄ Cl ₂] Cl.2H ₂ O

- Ans. [D]
- $\label{eq:sol} \textbf{Sol.} \qquad n_{\text{COCI}_3.6H_2O} = 0.01 \text{moles}$

number of moles of ions = $\frac{1.2 \times 10^{22}}{6 \times 10^{23}}$ = 0.02

Two mole of Ag⁺ and Cl⁻ ions are produced so Complex is = $[Co(H_2O)_4Cl_2]Cl.2H_2O$ [0.01 mol of above complex will give 0.01 moles of Cl ions. 74. pK_a of a weak acid (HA) and pK_b of a weak base (BOH) are 3.2 and 3.4, respectively. The pH of their salt (AB) solution is: (A) 6.9 (B) 7.0 (C) 1.0 (D) 7.2 Ans. [A] $pH = \frac{1}{2} (pK_w + pK_a - pK_b)$ Sol. $=\frac{1}{2}(14+3.2-3.4)=6.9$ 75. The increasing order of the reactivity of the following halides for the S_N1 reaction is: CH₃CHCH₂CH₃ CH₃CH₂CH₂CI $p-H_3CO-C_6H_4 - CH_2CI$ CI (I) (II)(HI)(C) (II) < (III) < (I)(A) (II) < (I) < (III)(B) (I) < (III) < (II)(D)(III) < (II) < (I)Ans. [A] ÇH₂–CI Sol. OCH3 S_N1 reactivity order 76. Both lithium and magnesium display several similar properties due to the diagonal relationship; however, the one which is incorrect is-(A) both form soluble bicarbonates (B) both form nitrides (C) nitrates of both Li and Mg yield NO₂ and O₂ on heating (D) both form basic carbonates Ans. [D] Sol. LiHCO₃ & Mg(HCO₃)₂ both are soluble

 $6Li + N_2 \longrightarrow 2Li_3N$

 $3Mg + N_2 \longrightarrow Mg_3N_2$

 $2\text{LiNO}_3 \xrightarrow{\Delta} \text{Li}_2\text{O} + \text{NO}_2 + \frac{1}{2}\text{O}_2$

 $Mg(NO_3)_2 \xrightarrow{\Delta} MgO + 2NO_2 + O_2$

Mg forms basic carbonate having formula 4MgCO₃. Mg(OH)₂.6H₂O (white ppt.)

where as Li does not

77. The correct sequence of reagents for the following conversion will be:

Corporate Office: 44-A/1, Kalu Sarai, New Delhi 110016 | Web: www.meniit.com

36

Ans. [C]

Sol.
$$r = 0.529 \times \frac{2^2}{1} = 2.12 \text{ Å}$$

85. The major product obtained in the following reaction is:

Ans. [C]

Sol.

89. A water sample has ppm level concentration of following anions

$$F^{-}$$
 = 10; SO_4^{2-} = 100; NO_3^{-} = 50

The anion/anions that make/makes the water sample unsuitable for drinking is/are-

- (A) both SO_4^{2-} and NO_3^{-} (B) only F⁻ (C) only SO_4^{2-} (D) only NO_3^{-}
- Ans. [B]
- Sol. F⁻ ion concentration above 2 ppm causes brown mottling of teeth.
- **90.** Which of the following, upon treatment with tert-BuONa followed by addition of bromine water, fails to decolourize the colour of bromine?

38